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Abstract

Transformer models such as BERT, RoBERTa, and DeBERTa have revolutionized the
field of Natural Language Processing in recent years with substantial improvements
in the contextual understanding of text. While political scientists have begun adopt-
ing these models, their performance differences are not well understood, especially in
cross-lingual applications. This article introduces Transformer models, compares their
performance using three different text-as-data political science projects, and shows how
to fine-tune them to fit the specific needs of the researcher. We find that RoBERTa and
DeBERTa greatly outperform BERT in certain circumstances, and that further training
boosts performance in specialized text. In cross-lingual applications, XLM-RoBERTa
significantly outperforms both multilingual BERT and multilingual DeBERTa.



One of the most abundant sources of data available to social and political scientists today is

text. The rise of social media and open access to Twitter data partly explain this

phenomenon, as does recent progress in text digitization techniques that have brought

books and manuscripts to digital life that were long hidden away in archives and libraries.

Text can help us answer substantive questions in political science on topics as diverse as

political campaigns (Hobbs and Lajevardi, 2019; McGregor, 2020), political polarization

and radicalization (Medzihorsky, Littvay and Jenne, 2014), media studies (Matalon et al.,

2021), public opinion (González-Bailón and Paltoglou, 2015), Supreme Court decisions

(Strother, 2017), gender and politics (Gleason, 2020), and many others. As the availability

of text grows, so does the need for computer-based text analysis techniques to supplement

those done by humans.

Recent advances in Natural Language Processing (NLP) have spearheaded a text-as-data

revolution. In particular, the development of a novel type of deep learning architecture,

Transformers, in 2017 has allowed language models such as BERT, RoBERTa, DeBERTa to

understand, classify, and artificially generate text with groundbreaking levels of contextual

accuracy (Tunstall, von Werra and Wolf, 2022; Liu et al., 2019; He et al., 2020). Political

scientists have begun using Transformer-based models, but there is still a need for clarity

around the performance differences across BERT, RoBERTa and DeBERTa models when

applied to political science texts. This is especially true in the case of multilingual

classification problems, where multiple models such as mBERT, XLM-RoBERTa and

mDeBERTa exist but there is little consensus over which one performs best or by how

much. Lastly, we illustrate how researchers can fine-tune an off-the-shelf Transformer model

to apply it to specialized text. First, they can further train the model with new unlabelled
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text data to suit specific tasks, thus improving contextual understanding of specialized

language. Second, they can adapt the model to any specific application with labelled

training data. Combining both of these strategies, we argue, yields substantial gains in

performance.

In this article, we aim to introduce Transformer models to a broader audience, comparing

their performance in English and multilingual models and showing how researchers can

further train them on specialized text.1 Beyond these contributions, we provide detailed

evidence for what we believe are the practical advantages of these models for political and

social scientists: (1) lower costs to generate data from text through accurate classifiers, (2)

potential for large-N analysis for otherwise small-N projects, and (3) the ability to generate

new theoretical questions and empirical tests that would not be possible without these

models. We highlight their importance through three existing political science projects that

use text-as-data for sentence or text classification.2

The culmination is three main findings that provide evidence for determining which model

to use based on the needs of the researcher. First, RoBERTa is the model that generally

offers the greater balance between performance and computational cost. It consistently

outperforms BERT by what we consider is a substantial margin. DeBERTa, on the other

hand, has similar performance to RoBERTa but uses about twice as much computational

power. Second, creating custom-made BERT, RoBERTa or DeBERTa models through

further training yields substantial improvements in classifier accuracy. Third, as expected,

1Further training is the fine-tuning process whereby we provide a model with new words (tokens) and new
text on which to learn how the new words are used in context.

2Our goal is in no way to assess or issue any judgments on any of these projects but rather to highlight the
alternatives that Transformers-based models offer, especially when compared to traditional human coding
approaches and other widely used NLP classification techniques.
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all Transformers-based models improve on the performance of other widely used machine

learning approaches.3 With performance gains and the fine-tuning flexibility of

Transformers, we believe a growing number of political science projects using text data can

benefit from a big data approach.

Indeed, early work applying Transformer-based models showcases the potential of BERT

and RoBERTa in political science. Abercrombie et al. (2019) and Abercrombie and

Batista-Navarro (2022) employ BERT to detect policy preferences (up to 34 topics) from

members of Parliament using debate motions. Similarly, Alemán, Micozzi and Vallejo Vera

(2022) use XLM-RoBERTa to classify legislative speeches by topic. Bonikowski, Luo and

Stuhler (2022) apply RoBERTa to identify frames in U.S. presidential campaigns. Since the

focus of these papers is not solely methodological, the selection of their model of choice is

unclear (and beyond their scope). Questions also remain around what additional steps

scholars could follow to further improve the performance of their models. Our paper

provides a systematic overview of Transformer-based models and how to apply them in

different classification tasks. While not comprehensively, we show how these models can be

fine-tuned for various tasks, including multilingual classification. In comparing the

performance of the models, we detail the advantages of using different types of models in

examples familiar to social scientists (e.g., performance and computational cost, additional

training). Ultimately, we offer an approachable explanation of Transformer models with the

aim of making them more accessible to a larger number of applied researchers.

The article is structured as follows. We first briefly introduce the Transformers family and

show how it differs from earlier NLP approaches adopted in the social sciences. We then

3We compare the performance of Transformer models with SVM and Bi-LSTM recurrent neural networks.
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introduce our main arguments in favor of using Transformers-based models in political and

social sciences. Three existing text-as-data projects are then used to illustrate our

arguments and show the full practical potential of BERT-based models.4 We conclude with

our findings, recommendations, and links to resources for researchers to use these models in

their projects.

NLP in the Social Sciences

The field of NLP is in the midst of a major revolution. In the past decade, scholars have

gone from computing word frequencies and generating broad descriptive assessments to

building deep learning systems that understand the contextual meaning of words and

sentences (see Grimmer, Roberts and Stewart, 2022; Tunstall, von Werra and Wolf, 2022).

Two factors explain the NLP boom. First, computational power has multiplied recently,

providing the necessary technology for computationally intensive text analysis. The second

reason is the increased availability of accurate NLP models. Companies like Google and

Facebook have invested large amounts of resources to improve text-to-speech and

translation technology to detect and weed out (however halfheartedly) certain types of hate

speech and disinformation from their platforms. Translation tasks have become increasingly

important in an interconnected world. To respond to these needs, new Transformers text

models emerged, bringing generational leaps in accuracy and performance.

In political science, machine learning models have become increasingly popular to tackle

tasks such as supervised and unsupervised text classification, named entity recognition,

sentiment analysis, text similarity, among others. Topic models in particular have been

4We will focus solely on supervised sentence classification tasks to make the article tractable, even though
the models we introduce have broader applications.
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widely used to cluster texts into groups without labelled training data (Grimmer, 2010;

Roberts, Stewart and Tingley, 2016; Catalinac, 2016; King, Pan and Roberts, 2013). These

models have worked well with newspaper articles and official statements from political and

social elites, but they are less accurate when the text is informal or short (Grimmer,

Roberts and Stewart, 2022). Supervised text classification (the object of this article) uses a

labelled training set to train a model that can accurately classify unseen text in the same

categories as the training set (Barberá et al., 2021; Pan and Chen, 2018). Event extraction

from text has also begun using machine learning approaches despite relying on dictionary

approaches for years (Ward et al., 2013; Beieler et al., 2016), and named entity recognition

has registered improvements in recent years with the growth of libraries such as NLTK and

spaCy.5

In supervised text classification, common machine learning approaches include Support

Vector Machines (SVM) and Logistic Regression (LR) classifiers. These models use a

bag-of-words approach, with an off-the-shelf tokenizer like NLTK to predict the category of

a given text.6 A tokenizer breaks down sentences into tokens, or word chunks that the

model can understand, which are then converted into numeric vectors using various

strategies.7 These vectors enable the model to capture how important words are in a given

text sequence. Machine learning models then use these vectorized representations of text to

produce classification predictions based on some outcome of interest. While simple, these

5The Natural Language Toolkit, or NLTK, is a suite of libraries used to perform many NLP tasks. Text also
must be pre-processed first, removing stopwords (‘the’, ‘and’, and so on) and special characters for greater
accuracy.

6More recent models such as Bi-LSTMs (introduced below) use conditional bag-of-words approaches that
preserve context to a much greater degree.

7One of the most popular is NLTK’s (https://www.nltk.org), which is often combined with ‘term
frequency–inverse document frequency’, or ‘TF–IDF’ vectorizer, for improved performance.
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models can yield good accuracy scores in tasks where context is not particularly important

for performance.

Improving on word vectorization, one of the first revolutionary advances in NLP was

Word2Vec word embeddings, developed in 2013 by Google (Mikolov et al., 2017). Word

embeddings are mathematical representations of words in a vector space, where vectors

closer to each other represent words that are more similar in meaning. A commonly used

English-language Word2Vec model trained on a large set of Google News text contains 3

million word embeddings, each of which is a numeric vector of size 1 x 300.8 Other widely

used word embeddings are Stanford CoreNLP’s GloVe and Facebook’s fastText embeddings

(Pennington, Socher and Manning, 2014; Bojanowski et al., 2017).9 Word2Vec and GloVe

embeddings are often paired with Recurrent and Convolutional Neural Network

architectures for text classification (RNN and CNN).10 One of the most commonly used are

Long Short-Term Memory (LSTM) networks, a type of RNN that takes in sequential input

but keeps important information from further back in the sentence that can be useful to

understand new words (Chang and Masterson, 2020). Bidirectional LSTM networks, or

Bi-LSTMs, process sequential information both forward and backward, further improving

contextual understanding. We discuss these alternative models in detail in our first

application when we describe the baselines for comparing our main Transformers models.

The problem with these approaches, however, is that word vectors are static, meaning that

each word has a corresponding fixed mathematical vector after training. In Word2Vec,

8As a result, the computational demands of using these large Word2Vec embeddings increased exponentially.
However, nowadays they can be handled easily by most mid- and top-end CPUs.

9See Rodriguez and Spirling (2022) for embeddings created specifically for political science applications.
10Neural networks are deep learning algorithms that recognize patterns in data through different layers
and nodes. Nodes process information via weights and each layer produces a new and more accurate
representation of the input (see Albawi, Mohammed and Al-Zawi, 2017).
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GloVE and fastText, the numeric vector for the word ‘bear’ is the same in ‘grizzly bear’,

‘teddy bear’, ‘bear fruit’ or ‘bear a loss’. This is where the Transformers deep learning

architecture innovates: it can dynamically capture the different meaning of words based on

context. In the example above, a Transformers-based model would produce four different

word embeddings for ‘bear’, one for each specific use of the word. While these approaches

are computationally much more expensive, their benefits greatly outweigh the drawbacks.

We now introduce these models and their architecture.

The Intuition Behind Transformers Networks

NLP models based on the Transformers deep learning architecture have yielded unparalleled

accuracy in sentence classification, question answering, language translation, and other

tasks. Transformers are the engines that make BERT, RoBERTa, XLM-RoBERTa, and

DeBERTa run.11 What exactly does the Transformers neural network architecture do to

yield these results? They generate dynamic word embeddings that change for every word

depending on the context. That is, no word embedding for a given word will be the same

across different texts. Each embedding incorporates the word’s position in a sentence and

its relationship with words that come before and after. The embedding for the word ‘bear’

is different in sentences containing ‘grizzly bear’, ‘teddy bear’, ‘bear fruit’ or ‘bear a loss’.

The dynamic nature of these embeddings allows for greater contextual understanding as the

context largely determines the word embedding itself. This is the key difference between

the Transformers deep learning architecture and other well-known deep learning

architectures such as RNNs or CNNs, which mainly use static embeddings.

11Other models, such as XLM-Net and GPT-3, also use the Transformers architecture.
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To accomplish this, Transformers networks use a mechanism called self-attention. This

process allows the network to take an entire text as input and process its words all at once

rather than sequentially, as RNNs and previous approaches in NLP do (Vaswani et al.,

2017; Tunstall, von Werra and Wolf, 2022). However, processing all words at once is

computationally intensive, and the Transformers architecture is complex. Let us begin by

describing its encoder layers. Encoder layers are the different layers in neural networks,

including Transformers, that perform computations. Each encoder is identical and includes

both the self-attention mechanism and a feed-forward neural network (FFNN). Information

passes from one layer to the next becoming progressively simpler and more useful by

reducing the amount of information and distilling its essence until it can produce the most

accurate output for a specific application (say a classification or translation task) . Figure 1

describes how the encoder of a Transformers model works. The input (“I love this city”)

passes through three encoder layers, starting with each token’s initial representation or

embeddings (x1 through x4). These embeddings change as they move from one layer to the

next, until the embeddings reach their final form (f1 to f4). The diagram in Figure 1 shows

a three-layer encoder (encoder1 to enconder3), but BERT and RoBERTa base models have

12 layers.

An element within each encoder layer that helps implement the self-attention mechanism is

the attention head. Each attention head uses multiple matrices to compute the

mathematical relationship between all words in a sentence.12 In the example of Figure 1,

12More technically, each input consists of ‘queries’ and ‘keys’ matrices. In the sentence ‘Mary likes books’,
to give meaning to the word ‘Mary’ (query) we look at the whole sentence, a find the word that is most
related to it, in this case, ‘likes’ (key). This process happens for each word in the sentences. Similarly,
the self-attention mechanism will estimate the distance (dot product) between the vector representation of
every query to the already provide vector representation of every key. Note that, while the tokens can be
the same, the representations will be different (as they they come from previous layers). Mathematically, we
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Figure 1: Diagram of a three-stack encoder of a Transformers model. Input text is tokenized and
given an initial embedding (vectorized representation) simplified in our figure as x1 through x4.
The initial embeddings are transformed as they enter the first encoder1. In it, the self-attention
mechanism updates the embeddings (z1 through z4), which are then passed through a feed-forward
neural network. They exit the encoder as a more accurate set of embeddings (r1 through r4). The
process is repeated for all encoders in the neural network. For example, pre-trained BERT-base
models use 12 encoder layers.

the self-attention mechanism allows the model to associate “this” with “city” (rather than

obtain the dot product of K(eys) and Q(ueries) such that Attention(Q,K, V ) = softmax(QKT )/
√
dk)V

where d is the dimension of K and used as an scaling factor. See Appendix F for further details.

9



with “I”). Thus, the new representation of “this” (z3 and eventually r3 in Figure 1) will

have some information from the other words in the batch, thus imbuing the embedding of

“this” with contextual information from all surrounding tokens. encoder1 will produce one

output matrix (composed of r1 to r4) that moves on to the following encoder layer

(encoder2) and attention head, beginning the process again and repeating it as many times

as there are attention heads –12 in total for base BERT and RoBERTa models (see

Ravichandiran (2021) and Tunstall, von Werra and Wolf (2022) for more detailed

information on these calculations). The last encoder outputs a final representation (f1 to

f4), which can then be decoded to generate a specific outcome such as a translation into

another language or a classification into a given category (Vaswani et al., 2017; Tunstall,

von Werra and Wolf, 2022; Ravichandiran, 2021). Usually, the more layers and attention

heads there are, the more precise the final representation is.

As shown in Figure 1, the vector representation of each token changes as it progresses

through the encoder layers of the Transformers network (Ravichandiran, 2021). For

instance, the numeric representation for ‘bear’ will be different if it is followed by ‘fruit’ or

if it is preceded by ‘teddy’. Each attention head will output an increasingly accurate word

embedding for the word ‘bear’ that reflects its meaning in the sentence. In ‘the child loved

the teddy bear because it was soft’, the Transformers architecture will use all words in the

sentence and give special weight to those it thinks are related to ‘bear’ –‘child’, ‘teddy’, and

‘soft’– to produce the appropriate embedding for the word ‘bear’, one which captures the

idea of a teddy bear rather than a grizzly bear. Since embeddings are numerical

representations of words (vectors that follow algebraic rules), the distance between two

embeddings is an approximation of the relation between words –e.g., vectors that are closer
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together are more similar than vectors that are farther apart. For example, in the

sentences: ‘The kid had to bear the loss of misplacing his teddy bear and his doll,’ the

cosine similarity between (teddy) bear and doll should be higher than the cosine similarity

between (teddy) bear and bear (the loss). In Appendix H we provide code and results using

RoBERTa to show that this is the case. Also, in Appendix F, we provide a more in-depth

and technical discussion of Transformers networks.

Lastly, note that we emphasize the difference between Transformer models and Bi-LSTMs

in terms of these dynamic word embeddings, but key differences across these models

warrant further discussion. First, Transformers process words all at once, using positional

embeddings to understand word order.13 This differs from LSTMs, which have to process

tokens sequentially. The second main difference is the self-attention mechanism we

described above, which produces contextual word embeddings to fully understand words in

context. LSTMs, on the other hand, use static word embeddings. Bi-LSTMs can maintain

the meaning of relevant words further back or forward (they are bidirectional) in the

sequence to improve predictions, but the embeddings do not change dynamically with

context. Due to their capacity to understand context better than traditional LSTMs or

CNNs, we expect Bi-LSTMs combined with the most recent state-of-the-art word

embeddings (GloVe) to provide the best benchmark on which to compare Transformer

models.

The Transformers Family: BERT, RoBERTa, and DeBERTa

Google AI’s BERT and Facebook AI’s RoBERTa and XLM-RoBERTa are the encoders of a

13Positional embeddings are an additional matrix where each token is given a number to represent its position
within a text.
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Transformers model. After all, BERT stands for ‘Bidirectional Encoder Representations

from Transformers’.14 Google’s BERT encoder consists of 12 encoder layers and 12

attention heads in its BERT-base configuration, and 24 encoder layers and 16 attention

heads in its BERT-large configuration (Ravichandiran, 2021).15 Also, note the word

‘bidirectional’ in BERT, which points to its ability to read text forwards and backwards,

relating each word to all words in a sentence.

BERT and related models leverage the Transformers architecture we just described, but

that in itself does not ‘train’ the models. For training, these models need (1) information as

well as a way to (2) learn from that information. Step (1) is relatively simple, if

computationally intensive. The creators of BERT used 11,038 books from the Toronto

BookCorpus and all of English Wikipedia to train BERT –a total of 16GB worth of text

(Devlin et al., 2018). Facebook AI’s RoBERTa, on the other hand, used the same data as

BERT and added more data from Common Crawl (CC-News), Open WebText, and a

subset of Common Crawl named Stories,16 for a total of 160GB of text, or ten times more

data (Liu et al., 2019). Cross-lingual RoBERTa, XLM-R, was trained using Wikipedia for

all languages and data from Common Crawl (Conneau et al., 2019). While it is true that

models have increasingly diversified their sources of training data, the over-reliance on

Wikipedia and web data has implications for specialized applications, as the language from

these websites does not include the types of words and text required for high performance

14RoBERTa stands for ‘Robustly optimized BERT approach’ and XLM-RoBERTa stands for “Cross-lingual
RoBERTa.”

15Each layer of a BERT-base encoder outputs word vectors of length 768, while the BERT-large model
outputs word vectors of length 1,024 (the same applies to the base and large versions of RoBERTa and
XLM-R). Longer vectors contain a more accurate representation of a word, but also require more space
and computational power.

16Common Crawl is a repository of historical websites.
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in specialized tasks. Our third application below addresses this issue and provides a

solution for researchers to improve task-specific performance.

Step (2) is a bit more complex. How do BERT and similar models learn how words relate

to each other using large amounts of text? The method they all share for learning is called

Masked Language Modeling (MLM).17 MLM masks about 15% of tokens in a text corpus.

Masking means replacing the actual token with <MASK>, and then using the full power of

the self-attention mechanism from Transformers to predict the masked words. For instance,

in the sentence ‘I love visiting the windy city, <MASK>, the cultural and commercial

capital of the Midwest’, BERT and RoBERTa will use the information before and after

<MASK> to predict ‘Chicago’ While ‘windy city’ may provide a clue, the fact that the city

is an important Midwest metropolis is key in predicting the word correctly. MLM takes

advantage of the two most innovative and powerful features of Transformers-based models:

bidirectionality and self-attention. To predict ‘Chicago’ BERT and RoBERTa use words

before and after the <MASK>, not only words before. They use all relevant information in

the sentence (‘city’, ‘windy’, ‘midwest’, ‘metropolis’, and ‘commercial capital’) to come up

with a probability for the most likely candidate word to replace the <MASK>. During

training, BERT and similar models use MLM to predict 15% of all words. Through MLM,

these models become highly accurate at word prediction, which means that in large

numbers, they can understand all words in a text and how these words relate to one

another. In sum, while Transformers is the neural network architecture that produces the

most accurate representations through the self-attention mechanism, MLM is what allows

17BERT also uses next sentence prediction as a training method, but MLM remains the most common
training method across the different models.
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Figure 2: Representation of the Masked Language Modeling. Transformer models randomly mask
15% of tokens. After running the corpus through the Transformers and neural-network architecture,
it asks the model to predict the masked word. Transformer models then calculate loss and the
required gradient changes to optimize the model’s weights and obtain better representations.

BERT, RoBERTa and other models to learn about a text.18 Figure 2 provides a graphical

description of MLM.

We hightlight four key implications of MLM. First is its ability to understand context well.

As explained above, by masking words in text and making the model predict the masked

words, we have achieved substantial improvements in performance. The second is the

inductive and social biases that emerge from using MLM. Inductive biases help Transformer

models using MLM to learn sentence structures, which can lead to downstream

performance gains (Zhang and Hashimoto, 2021). However, they are also known to “encode

worrying levels of social biases”, especially around gender and race (Kaneko and Bollegala,

2022). Third is the lack of clarity that remains around the share of words in the training

18BERT models use MLM to estimate the probability distribution for all tokens to replace the <MASK>
object. Once we uncover the masked object, BERT can estimate loss, the difference between the probability
distributions for each output token and the true labels. In the next iteration, BERT will correct its
prediction accordingly. This process appears in more that one stage of the training process. For example,
during fine-tuning (explained below), we can use MLM to improve our predictions as well.

14



data that should be masked. The creators of Transformer models masked 15% of words in

the unlabelled training data, which has become common practice. Others have begun to

question whether masking more words can yield better results (Wettig et al., 2022). This

naturally leads to the fourth implication, namely, that authors require between 0.5 and 1

gigabyte of additional, specialized unlabelled data to make noticeable performance gains.19

We address this issue further in application 3.

Note also that BERT, RoBERTa and XLM-RoBERTa all need to first tokenize a sentence

before they can compute an output. That is, they need to break the text into words and

word chunks that have meaning according to the training process. Since BERT was trained

on less data than RoBERTa, it has 30,522 unique vocabulary elements, while RoBERTa has

50,265. The cross-lingual model XLM-RoBERTa, on the other hand, has the largest

number of unique vocabulary elements at 250,002 (Conneau et al., 2019). These unique

vocabulary elements can handle out-of-vocabulary words by concatenating different word

chunks.20 For instance, the word ‘training’ would be tokenized as “train, ##ing”, with the

double hashtag indicating that ‘ing’ is a subword token that follows the token ‘train’. This

approach to sub-word tokenization has proven to be accurate in handling out-of-vocabulary

words (Ravichandiran, 2021; Tunstall, von Werra and Wolf, 2022).

19It could be that by masking a higher percentage of words, MLM would perform better at predicting newly
itroduced vocabulary elements, as they would be masked more often. Future research should address this
issue.

20Transformers models use different approaches for subword tokenization. BERT uses byte-pair encoding,
which reduces words to the character level and creates character groups based on unique vocabulary ele-
ments according to their frequency in the training data. RoBERTa uses Byte-level Pair Encoding, which
converts characters to bytes (the letter ‘b’ is byte 62, for instance) and then combines the bytes into groups
also according to their frequency in the training data. Generally speaking, if a group of characters or bytes
exists as a token in the vocabulary, it is used as a token. If not, it is further broken down until a vocabulary
token matches it. Because characters are converted to bytes, this method is more helpful in multilingual
contexts. These methods differ from techniques such as lemmatization or stemming in that the full word
and all the information are kept in subword tokenization, and it is up to the Transformers matrices to
calculate how important each subword token is in relation to all other tokens in the sentence.
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So far we have discussed BERT, RoBERTa, and XLM-RoBERTa, but not DeBERTa.

Decoding-enhanced BERT with disentangled attention (DeBERTa) model makes two

technical innovations on BERT and RoBERTa (He et al., 2020). One is that it separates

the word’s content from its position in a sentence and thus computes the final embedding

from the Transformer in a way that makes the representation more accurate. The second is

that it refines the final decoder layer to achieve better fine-tuning (He et al., 2020).21

DeBERTa was trained on 78GB of data and reported improvements between 0.9 and 3.6

percentage points over RoBERTa (large) even when using half of the training data (He

et al., 2020). The downside of DeBERTa is that it uses double the GPU RAM of RoBERTa

(large) and over three times that of BERT (large).22 In the applications section we compare

DeBERTa performance to RoBERTa and BERT to see whether these reported performance

benefits outweigh the computational costs.

Fine-tuning a Transformers-based model

Where Transformers-based models’ abilities shine brightest is in their general applications,

a process known as fine-tuning. During fine-tuning we use a pretrained Transformers-based

model and modify its final encoder layer to suit our particular task. Thus, we can harness

the great knowledge that BERT and RoBERTa already have about words and text to

produce highly accurate sentence classification of campaign slogans, judicial decisions,

racism on Twitter, and myriad other important political science research applications. The

following subsection details the general procedure to fine-tune and further train

21We will not go into depth about the details of DeBERTa’s innovations for want of space and an emphasis
on clarity and applications. Please refer to He et al. (2020) for more information.

22This is, to the authors’ knowledge, the first paper in the discipline to report these findings on computational
cost.
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Transformer models.

In general, there are two ways to apply these models: standard fine-tuning and further

training. Standard fine-tuning is the most common application and refers to using an

already trained or off-the-shelf Transformers-based model like BERT and applying it to a

specific task using manually labelled training data. Say we are using BERT and trying to

classify a text as positive or negative (sentiment). We first need a labeled training set,

usually a sample of text manually labeled ‘positive’ or ‘negative’. The size necessary for the

training set varies, but one of the advantages of BERT, RoBERTa, and similar models is

that they can be fine-tuned using relatively small amounts of training data.23 We then

tokenize all the labeled text using BERT’s tokenizer and divide the training data into

training and test sets.24 We set the appropriate model hyperparameters25 and apply BERT

to our specific classification problem. We use 10-fold cross-validation to fully evaluate the

capacity of the model to generalize to unseen data.26 Once the model has been

cross-validated, we train the final version using the full set of training data without splits

and obtain our final classified dataset.27

23No hard rule exists on the amount of labeled text per category required to train a Transformers model,
but it is ideal to have between 200 and 500 observations depending on the task. Transformer-based models
perform well with small training sets (Khan et al., 2021).

24The training set is a subset of the training data that the model will use to “learn” how to classify the task
at hand. The model then uses the test set to evaluate its prediction accuracy on unseen data. Common
practice is to split the data into 80% train and 20% test sets in five-fold cross-validation and 90% and 10%
in ten-fold cross-validation.

25Learning rate, number of epochs, batch size, optimizer, and number of warm-up steps.
26In all our applications below, we perform 10-fold CV on the full dataset on a set of 90-10 train/test splits.
We do not hold out an extra 10 or 20% of the data for a true out of sample test for two reasons. First, we
report the test averages for the full CV run as our final test scores, and we do not select a specific ’best
model’ from the CV run. The second, and more constraining, reason is that we do not have large amounts
of data for applications 1 and 2, and withholding data from training affects performance noticeably. We
further explain cross-validation and how to set hyperparameters in Appendix B.

27Note the difference between the cross-validation and final fine-tuning step. The cross-validated performance
metrics give us a measure of the model’s performance to generalize to unseen data. The final fine-tuning
step uses the full training set without splits for training and test data and the best model hyperparameters
from cross-validation. See Appendix B for a more detailed discussion on cross-validation and Appendix C
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The second way to fine-tune a BERT –or similar– model is through further training the

model. To do so, researchers provide additional unlabelled text data to the model to

improve accuracy for a specialized task. That is, we take all the knowledge BERT has and

add (1) new raw text data and (2) new vocabulary elements to allow it to understand

specialized text better. As a practical guide, the researcher must first gain access to a

BERT, RoBERTa or DeBERTa pretrained model that they want to train further. After

that, they must add to the model’s tokenizer a new set of unique vocabulary elements

specific to the domain of study. The choice of vocabulary should be grounded on the

researcher’s expertise on a topic. Third, the researcher must collect, tokenize28 and

administer new unlabelled data containing the new vocabulary elements to the base

pretrained model. The fourth step is to retrain the model, which allows it to see the new

vocabulary elements in context and understand them better. Lastly, the model can then be

saved and applied using standard fine-tuning to build a classifier. We provide a more

detailed guide with Python code snippets on how to further train a model in Appendix E.

For example, in application 3 in the next section, we further train a RoBERTa-large model

to better recognize text that contains the words ‘covid’ and ‘coronavirus’, two terms that

did not exist in 2018 when Facebook AI trained the original RoBERTa. We use an

unlabelled set of 6,076 academic abstracts and 4.8 million tweets and news headlines, all of

which are about Covid-19. The idea is that performance improves when adding ‘covid’ and

‘coronavirus’ as new unique vocabulary elements to the model and training it to understand

what these two new elements mean in relation to other words in different texts. Note that

for a step-by-step guide with Python code snippets on how to perform standard fine-tuning.
28Using the updated tokenizer with the new vocabulary elements.
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further training generates a new variant of the BERT or RoBERTa model, which can then

be used for standard fine-tuning as described above. We further detail how to further train

a RoBERTa model in application 3.

Using Data from Transformers in Downstream Analyses

Once researchers have built and saved the final classifier, they usually apply it to a new
and unseen dataset to generate larger amounts of data. It is important, however, to be
cognizant of the potential measurement bias present in Transformers-generated data, as it
can lead to estimation bias. We closely follow recommendations by Egami et al. (2023), who
propose a method to reduce measurement bias in data generated through large language
models. The key contribution of the method is in comparing human labelled data with
data generated through a large language model, and using that information to estimate the
extent of measurement error in the larger sample. More specifically, the authors suggest using
human-coded data to produce a pseudo-outcome of the target model and estimate a correction
term from the difference in outcome from the surrogate model (predicted data) and the
pseudo-outcome (human-coded data). We suggest that researchers apply this methodology
once they have created the full dataset for analysis. In Appendix I, we provide a more detailed
illustration of Egami et al.’s (2023) methodology using an example based on Application 3
below.

In sum, by fine-tuning a Transformers-based model for our own application, we can im-
prove contextual understanding and therefore task-specific performance. We can then apply
the custom-built model to unseen data to generate larger amounts of labeled data to be used
for analysis, correcting for any potential measurement biases present in the machine-labeled
data. We now illustrate the techniques described above using three different applications
relevant to political scientists.

Applications

We use three projects within or relevant to political science to compare the performance of
BERT, RoBERTa and DeBERTa models in different types of text data. We selected the
projects carefully to provide a wide array of potential applications within political science.
The first project uses English text from Twitter and produces a binary classification of civil
and incivil tweets. The second project uses text in 29 languages and classifies it into four
categories. The final project uses Covid-related text in English and a binary classification of
true and fake news. This final application helps illustrate the advantages of further training
BERT and RoBERTa. We also provide results from two non-Transformer baseline models
for reference: (1) Support Vector Machines (SVM), which uses a simpler machine learning
model to classify text, and (2) a Long-Short Term Memory recurrent neural network, which
is the non-Transformer state of the art model in the literature. We provide further details
on these two baseline models below.

We run all of our models Python, the language of choice in computer science for the
NLP models described in this article. The code uses three common machine learning and
deep learning Python libraries: Transformers, Torch and Scikit-learn. Code for these li-
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braries is widely available and accessible to all applied researchers. We have also made our
code available on GitHub (omitted). All pretrained models used in this article are pub-
licly available at huggingface.co. These include BERT-large (bert-large-uncased),
RoBERTa-large (roberta-large), DeBERTa-large (deberta-v3-large), XLM-RoBERTa
(xlm-roberta-large), mDeBERTa (mdeberta-v3-base) and mBERT (bert-base-mult
ilingual-uncased). We use learning rates within the ranges suggested by the authors of
these models, the weighted Adam optimizer, and 10 warm up steps.29 We use 4 epochs for
BERT, 5 epochs for RoBERTa and DeBERTa, and 6 epochs for the cross-lingual models, all
with an early stopping mechanism to prevent overfitting.30 The computational requirements
for each model vary widely, and researchers should consider the perfomance-cost trade-off
when deciding on which model and which platform to use.31 We provide further details
on the models in Appendix B, including how long each model takes to run and the maxi-
mum number of tokens used per application (see Table B.1). We also provide the standard
deviation for the F1 scores of all the cross-validation runs in the tables below.

Lastly, while this article and the applications that follow focus primarily on the predictive
performance of Transformer models, they are also useful for measurement. Indeed, we would
emphasize the importance of using these models to create new and more accurate measures
of complex political phenomena. For instance, Transformer models can help us generate
more precise measures for Supreme Court Justices’ ideal points, interest group interactions
in Latin American parliaments, democratic incumbents’ social media use, and a host of other
phenomena where text is a primary source of data. In fact, the variables that result from
these models, and which are then used in statistical models, are often their most powerful
contribution.

1. Incivility on Twitter

The first project studies incivility in US state legislatures (Gervais and Morris, 2019). The
authors leveraged increased Twitter activity by state legislatures (the institutions themselves
have Twitter accounts) and organized parties in state legislatures between 2006 and 2018,

29The learning rate is the parameter that determines how quickly the model ‘learns.’ A low learning rate
can lead to slow convergence or the model lingering in local optima. A high learning rate can often lead to
lack of convergence because the model overshoots the solution. Scholars should monitor loss and accuracy
gains to ensure they pick the right learning rate to maximize performance. Recommended learning rates
are 3e− 4, 1e− 4, 5e− 5, or 3e− 5 for BERT-large-uncased (our choice: 3e− 5), 1e− 5, 2e− 5, or 3e− 5 for
RoBERTa-large (our choice: 3e−5), and 5e−6, 8e−6, 9e−6, or 1e−5 for DeBERTa-V3-large (our choice:
1e − 5). Each researcher can then move the needle up or down to fit each specific task, testing learning
rates in these ranges. For XLM-R, 5e− 6 is recommended but again, this may vary slightly between 5e− 4
and 5e− 7 in most applications. The batch size is the number of samples that will be propagated through
the network in each iteration. A size of 16 is preferred over one of 8 and will produce better performance,
especially with more than two labels. After that, a batch size of 32 makes the model run faster but
does not meaningfully improve results and is much more computationally demanding (in terms of GPU
RAM). Weighted Adam is an adaptive optimizer that helps improve convergence and generalizability(see
Loshchilov and Hutter, 2017).

30Training ends after the first increase in validation loss when compared to training loss.
31In Appendix A, we include a breakdown of the computational requirements and costs associated with each
model on Table A.1. In this article, we use Jupyter Notebooks that we run either on Google Colab (free
GPU accelation up to 16GB of GPU RAM) or datacrunch.io for more demanding tasks. Table B.1 in
Appendix B details which computing platform we use depending on the model and the number of tokens.
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collecting all twitter activity in this period for all 50 US state legislatures and organized
state parties. The process yielded 344,000 total tweets and the authors built a sample of
2,076 tweets, and used three research assistants to code each tweet as either civil or incivil.
Examples of incivil tweets are: “.@AKIndDems Wrong. Please stop lying to the twitterverse.
Interested in the truth? Read here- https://t.co/D2p8OZAjBl #akleg” and “@AKIndDems
- that’s not true. Don’t play fast and loose.”32

The coders agreed on the labeling 75% of the time and the average agreement across coder
pairs was 78.7%. The Kappa score for inter-coder reliability is 0.591, indicating moderate
agreement. The authors of the article decided to code as ’incivil’ tweets where at least two
coders agree. This led to a total of 534 incivil tweets (25.7%) and 1,542 civil tweets (74.3%)
in our final dataset, a slightly imbalanced panel for which we will report F1 scores. The F1
score is the harmonic mean between precision and recall scores, and therefore better captures
accuracy in unbalanced panels.33 The mean length for these tweets is 19.29, resulting in an
average of 42.32 tokens per tweet using the RoBERTa tokenizer and a maximum number of
tokens of 147. We shuffle the full 2,076 tweet sample and use ten-fold cross-validation (CV) to
test the true ability of the model to generalize to unseen data. We report the average scores
from repeated (10 times) 10-fold CV for all models in Tables 1 and 2. Repeated 10-fold CV
consists in performing 10-fold CV multiple times (in our case ten times), yielding an average
of model performance across 100 models from 3 different sets of 10 folds. This approach
provides a much more accurate estimate of true out-of-sample model performance.34

In Table 1 we report our first set of tests using the ideal ‘type’ variable where at least two
coders agree.35 We compare the performance of BERT, RoBERTa and DeBERTa and provide
two other non-Transformer baseline models that have been widely used in the literature. First
is a machine learning approach using SVM with an NLTK English language tokenizer and a
TF-IDF vectorizer.36 NLTK is a powerful NLP library in Python that helps us convert text
into tokens that models can understand (Loper and Bird, 2002). The TF-IDF vectorizer is
a commonly used tool that penalizes common words and gives particular importance to rare
but more meaningful words, which helps the model to understand text better. This model

32The authors set four criteria for incivil tweets: 1) name-calling, mockery, sarcasm, and character assassina-
tion; 2) spin and misrepresentative exaggeration; 3) emotionality/digital stridency; 4) conspiracy theory.

33This is because it considers both how well the model has identified true positives as opposed to generating
false positives (precision), and the model’s ability to identify true positives as opposed to generating false
negatives (recall). Some models may generate a lot of true positives and very few false positives (high
precision), but they may also generate a lot of false negatives (low recall) –or vice versa. This is a larger
problem in unbalanced panels. When only 5% of observations are 1, models can produce more false negatives
because the 0 category dominates, leading to low recall, but they may also have high levels of accuracy
because most observations will be classified correctly. By using the F1 score instead of the accuracy score,
we get a much more representative picture of the model’s performance.

34We use a learning rate of 1e-05 (Deberta) and 3e-05 (Bert and Roberta), a batch size of 32, and train the
models over 4, 5 or 6 epochs. Monitoring validation loss versus training loss is a standard approach to
determining whether the model is overfitting. When the validation loss exceeds the training loss, the model
is trying to increase accuracy on the training data at the expense of generalizability. This is reflected in
worse performance on the validation set.

35This variable tends to produce the best performance across all models.
36We apply the TF-IDF vectorizer, which weighs token frequencies once document frequencies are also con-
sidered, to the SVM models to maximize their performance as they do not use word embeddings. The
TF-IDF vectorizer we use is from the scikit-learn Python library.
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shows how well machine learning models can classify text based on advanced calculations
of word frequencies and word importance, but it should perform worse than the rest of the
models, given its relative simplicity. The second model is a Bidirectional Long Short-Term
Memory (Bi-LSTM) recurrent neural network, which we pair with GloVe word embeddings
(see Chang and Masterson, 2020).

Table 1: Model performance by category (main ‘type’ variable; 10x repeated CV scores)

Model Civil Incivil Macro-Average

Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1

ML - SVM 0.787 0.832 0.809 0.005 0.420 0.350 0.379 0.012 0.591 0.604 0.594 0.007

Bi-LSTM - GloVe 0.806 0.841 0.820 0.006 0.479 0.409 0.423 0.009 0.620 0.644 0.627 0.007

BERT-large 0.828 0.921 0.872 0.002 0.672 0.448 0.527 0.021 0.684 0.751 0.700 0.010

RoBERTa-large 0.873 0.915 0.893 0.004 0.716 0.610 0.650 0.026 0.763 0.795 0.771 0.014

DeBERTa-v3-large 0.867 0.906 0.885 0.005 0.694 0.598 0.638 0.017 0.752 0.780 0.761 0.011

Random baseline (F1) 0.618

Majority baseline (F1) 0.743

*Random and majority baselines represent macro-average F1 scores.

The results from Table 1 align with our expectations, confirming that Transformers mod-
els produce the most accurate classifications for civil and incivil tweets. The F1 score for
RoBERTa’s classification of civil tweets is hight at 0.893. For incivil tweets, on the other
hand, RoBERTa’s F1 score stands at 0.650 on average over 10-times repeated 10-fold cross-
validation (100 models in total). The model’s overall F1 accuracy for RoBERTa stands at
0.771. DeBERTa performs similarly to RoBERTa across all models, but BERT’s performance
is significantly worse. BERT’s F1 score for incivil tweets is 0.527, a drop-off in performance of
0.123 when compared to RoBERTa’s 0.650. This is a statistically significant difference consid-
ering both models’ standard deviations. BERT performs well with civil tweets (F1 = 0.872)
but its overall performance is still worse than RoBERTa and DeBERTa.

Compared to the baselines, all Transformer models improve upon the performance of
simple machine learning and standard neural network approaches. As expected, the Bi-
LSTM RNN with GloVe embeddings performs better than SVMs in classifying incivil and
civil tweets. Simpler machine learning models cannot understand the linguistic nuances in
civil and incivil tweets and produce low levels of accuracy for incivil tweets.37 RoBERTa
still improves on Bi-LSTM-GloVe’s performance by 53.2% in the incivil tweets category and
23% in overall model performance (when comparing F1 scores). Note that overall levels of
accuracy may appear artificially high for these two models, considering that civil tweets are
easiest to classify as they represent 74.3% of the sample. Indeed, the random accuracy for
the (unbalanced) dataset is 74.3% for zeroes (civil) and 25.7% for ones (incivil).38

37The higher accuracy of SVM and Logistic Regression in civil tweets is trivial. The models default to
predicting civil when they cannot distinguish between the two because it is the category with the most
tweets in the sample.

38Random accuracy refers to the underlying probability that the model classifies an event correctly using
only the share of a given category in the data. Random accuracy reflects only a lucky guess by the model
without the need for further learning.
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We therefore recommend that researchers fine-tune a RoBERTa model to generate labeled
data from a larger set of texts. Equipped with this larger dataset with both human-labeled
and machine-labeled data, we the recommend applying the Egami et al. (2023) method in
downstream statistical analyses. This helps identify and correct for measurement bias in
the machine-labeled data. We provide a full example of this method in Application 3 and
Appendix I.

2. Classifying multi-lingual speeches

The second project we use to illustrate the advantages of Transformers-based models of NLP
is the Global Populism Database (GPD) introduced by Hawkins et al. (2019).39 The GPD
project started in 2006 with the goal of creating a large dataset of global populist discourse
by political leaders. The project currently contains 1,161 speeches by 234 leaders from 73
countries. The speeches are in 29 different languages40 and their length ranges from 18 to
20,587 words, with a mean length of 2,449.8 words and a median length of 1,938 words.
The languages in the sample are diverse. Pre-trained models in high-resource languages–i.e.
languages with a large amount of data available– such as English, Spanish and German, use
around 100GB of data. For low-resource languages, such as Albanian, Latvian, and Tagalog,
the pre-trained data can be closer to 10GB. The lack of training data for some of these
languages poses a general challenge for XLM-RoBERTa models to accurately classify text
in certain languages (see Conneau et al., 2019). For us, the challenge is to fine-tune two
cross-lingual classifiers using a relatively small sample size (1,161 speeches).

GPD’s coders have generated multiple variables from the speech data. We will focus
on one of these, the type of speech, which has four categories: international (the audience
is foreign and is preferably given outside the country); campaign (usually the opening or
closing of the campaign); ribboncutting (given to a local audience), and famous (a widely
circulated speech that shows the leader at his or her best).41 Classifying the type of speech
helps identify the context in which populism most frequently occurs. The distribution of the
categories is as follows: 304 speeches are ‘famous’ (26.2%), 304 are ‘international’ (26.2%),
294 are ‘ribboncutting’ (25.3%), and 259 are ‘campaign’ (22.3%). A majority of speeches are
over 512 words and tokens (99.6%), so we set a maximum length of 512 for the model and
select the first 512 tokens.

The challenges with this dataset are three. First, speeches are long (some have over 50,000
words), and Transformers-based models are limited to 512 tokens –and with 512 tokens, the
computational requirements for graphics acceleration are high. The other problem is sample
size.42 Having 843 speeches across 3 or 4 categories leaves only between 200 and 300 speeches

39The full dataset and the codebook can be found at: https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/LFTQEZ.

40Bulgarian, Czech, German, Greek, English, Spanish, Estonian, Finnish, French, Hungarian, Croatian,
Italian, Japanese, Lithuanian, Latvian, Macedonian, Dutch, Norwegian, Polish, Portuguese, Romanian,
Russian, Slovak, Slovenian, Albanian, Swedish, Tagalog, Turkish, and Ukrainian.

41See also The Guardian, ‘How we combed leaders’ speeches to gauge populist
rise”, 9 March 2019. https://www.theguardian.com/world/2019/mar/06/
how-we-combed-leaders-speeches-to-gauge-populist-rise.

42There are important implications related to the 512 token limit for Transformer models. First, longer
texts (say Supreme Court decisions) may have multiple sections and thus key pieces of information may
be scattered. If, say, we set a rule to use the first 512 tokens, we may miss important information for the
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per category to train the model and a lower number for the training set after the train-test
split required in 10-fold cross-validation. Lastly, this multilingual dataset covers tokens
for English, Spanish, Japanese, Chinese, Albanian, among many others. Considering these
challenges, the GPD data provide a strong test for the ability of XLM-R to classify speech
types accurately.

For this test, we compare the performance of XLM-R, multilingual BERT (mBERT), and
multilingual DeBERTa (mDeBERTa). As in the first application, we provide baseline results
for SVMs and Bi-LSTM with GloVe embeddings.43 Note, however, that the SVM’s tokenizer
(NLTK) and the Bi-LSTM’s word embeddings (GloVe) are not cross-lingual, so we have first
to translate all speeches into English (we could also translate them into other languages,
but English is usually the most accurate). We did this using Google Translate, a service
whose main engine is a refined and proprietary multilingual BERT model.44 We used these
models the same way we did with the English text in the first application above. We used
all speeches in their original languages for the XLM-R, mBERT, and mDeBERTa models.45

Table 2: Model performance by speech type (10x repeated 10-fold CV scores)

Model Campaign Famous International Ribbon-cutting Macro-Average

Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1

ML - SVM 0.716 0.668 0.684 0.008 0.559 0.618 0.580 0.009 0.809 0.831 0.817 0.010 0.775 0.708 0.740 0.010 0.708 0.715 0.705 0.006

Bi-LSTM - GloVe 0.730 0.715 0.709 0.007 0.552 0.558 0.540 0.015 0.759 0.708 0.719 0.029 0.697 0.668 0.682 0.017 0.668 0.685 0.663 0.005

mBERT 0.794 0.777 0.783 0.002 0.722 0.668 0.689 0.004 0.844 0.870 0.854 0.011 0.819 0.853 0.832 0.002 0.792 0.795 0.789 0.002

XLM-RoBERTa 0.838 0.845 0.839 0.004 0.792 0.724 0.750 0.011 0.863 0.933 0.895 0.007 0.865 0.854 0.856 0.014 0.839 0.840 0.835 0.009

mDeBERTa 0.784 0.777 0.775 0.011 0.697 0.652 0.670 0.012 0.831 0.882 0.852 0.005 0.833 0.831 0.828 0.004 0.786 0.786 0.781 0.001

Random baseline 0.25

Majority baseline 0.262

*Random and majority baselines represent macro-average F1 scores.

Table 2 shows the results. The F1 scores show that all Transformer models substantially
improve upon the performance of SVM and Bi-LSTM, which is to be expected. Within
the Transformers family, XLM-R performance is particularly impressive. Its F1 score for all
types of speeches is much higher than mBERT and mDeBERTa, which score similarly. The
largest difference is with ‘famous’ speeches, which XLM-R classifies 8 percentage points more
accurately than mDeBERTa (6.1 when compared with mBERT). This represents a 11.94%

classifier. This is, in our view, the most relevant drawback of the 512 limit. The authors have found in our
testing (both for this article and other independent research), that classifier performance does not improve
after using around 300 tokens in texts longer than 512 tokens. This may appear counterintuitive, but in fact
the classifiers are so accurate that it is often the case that around 300 tokens are sufficient to comprehend
the meaning of a text, and the increases in performance after that are marginal. The exception are texts
where information may be hidden in sections beyond the 512 limit. For those applications, we recommend
pre-processing the text to improve on the rule for which set of tokens to select from the text.

43We use a learning rate of 5e-06, a batch size of 16 and 4 epochs for XLM-R; and 3e-05, 32 batch size and 4
epochs for both mBERT and mDeBERTa. We set the max length to 512 tokens per speech, the maximum
we can fit into a Nvidia A100 GPU (80GB of RAM).

44We used Google’s API and kept the translations to a maximum of 3000 words per speech to keep the
comparison with other models fair and costs down.

45We do not expect the translation to be a source of bias, considering the improvements in accuracy of machine
translation in recent years especially with English as the target language. It is an inherent weakness of
non-Transformer models that they cannot handle text in more than one language at a time.
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increase in performance. XLM-R outperforms the SVM model by 29.3% and the Bi-LSTM
by 38.9% in classifying ‘famous’ speeches. Furthemore, XLM-R outperforms mDeBERTa by
around 4.5 percentage points on average in the other three categories. With XLM-R, two
of the four speech type categories have F1 scores over 0.839 (campaign and ribbon-cutting
speeches) and close to 0.90 (international speeches). High precision and recall scores show
that neither false positives nor false negatives are of concern. Across all speech categories,
mBERT and mDeBERTa perform better than the non-Transformer models but noticeably
worse than XLM-R. This difference is likely because XLM-R is a larger model than mBERT
and mDeBERTa, with more training data, tokens, and parameters, making it more accurate
for cross-lingual applications with longer texts overall.46

These results are particularly encouraging considering the data limitations mentioned
above. Even though the classes are well-balanced (around 300 observations in each speech
type),47 there are only 1,161 speeches to train and test the model. Moreover, the speeches are
in 29 languages, some of which are trained on much less text data than others. Compounding
this, we can only take the first 512 tokens from each speech for classification due to model
and GPU constraints. However, the model performs very well, showing the true potential
of XLM-RoBERTa and other Transformers-based cross-lingual models in text classification
tasks, especially with small training sets.

Given the results above, we recommend that researchers fine-tune an XLM-RoBERTa
model over mBERT or mDeBERTa to generate labels in a larger dataset based on the hu-
man coded data from the GPD. Again, once the machine-labeled data is available, applied
researchers should follow Egami et al. (2023) to detect and correct for any measurement bias
in the data before conducting their final analyses (see Application 3 and Appendix I).

3. Detecting Covid-19 Fake News

The third application focuses on detecting fake news around the Covid-19 pandemic and
shows the flexibility of Transformers models and how to apply them to specific tasks through
further training. This application is especially relevant to show the opportunity that Trans-
formers models hold for increasing performance in specialized domains. While we focus on
a specific case here (COVID-19), there are many domains in which researchers can greatly
improve classifier performance –and therefore generate better data– by following the steps
we outline in this section.48 We use a manually labeled dataset of true and fake news around
the Covid-19 pandemic (see Cheng et al., 2021), an increasingly salient topic of study within
political science (Calvo and Ventura, 2021; Greer et al., 2021; Timoneda and Vallejo Vera,
2021). The authors of the project gathered 7,179 news headlines and Twitter posts contain-
ing the words ‘coronavirus’ or ‘covid’ between December 2019 and September 2020. Through
fact-checking websites, they labeled each story as fake, true, or undetermined.49 Lazer et al.
(2018) define ‘fake news’ as ‘fabricated information that mimics news media content in form

46Please see Appendix A. For XLM-R, both xlm−roberta− large and xlm−roberta−base, a smaller model,
exist. However, for mBERT and mDeBERTa, only base versions exist. We take the best possible model
available from each for this application to show the true power of available cross-lingual models.

47The exact numbers are: famous, 304; international, 304; ribbon-cutting, 294; campaign, 259.
48For instance, researchers have increased performance of RoBERTa models to increase performance in the
classification of US Supreme Court decisions (citation ommitted) and of racist text in Spanish (citation
ommitted).

49The dataset is available at: https://github.com/MickeysClubhouse/COVID-19-rumor-dataset.
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but not in organizational process or intent’. Examples of fake news from the aformentioned
dataset are: ‘Coronavirus was created in a government lab as a bioweapon and then released
on the people of China’ or ‘Japanese doctors advice that taking a few sips of water every
15 mins will prevent the new coronavirus from entering your windpipe and lungs’. We use
the final dataset which has 3,681 fake (51.27%), 1,878 true (26.16%), and 1,620 (22.57%)
undetermined news stories and tweets. The mean length for the headlines is 21.56 words,
and the longest is 143 words, resulting in an average of 29.75 tokens per sentence using the
RoBERTa tokenizer and a maximum number of tokens of 160.

Data on the coronavirus pandemic provides a clear example of the advantages of further
training the different transformer models. When RoBERTa, for instance, was originally
trained in 2018-19, Covid-19 did not yet exist. Coronaviruses had circulated for years, but
none had resulted in a global pandemic. The word ‘covid’ did not exist until February of
2020, so this case provides an intuitive application for how to further train a model on highly
specialized words that we can be certain the original model was never trained to understand.
Original RoBERTa, therefore, cannot know what Covid-19 is or how the words ‘coronavirus’
or ‘covid’ are used in context today without further training. Our solution is to further train
a new RoBERTa model with new data containing the words ‘coronavirus’ and ‘covid’ and add
those two vocabulary elements to the tokenizer. The new model should be able to classify
texts containing these two new words more accurately than original RoBERTa.

There are four steps to further train RoBERTa and other Transformers models. First, we
add two new vocabulary elements –‘covid’ and ‘coronavirus’– to the RoBERTa-large (fast)
tokenizer, neither of which exists in the original. The tokenizer now has 50,267 unique vocab-
ulary elements, two more than the original’s 50,265. Second, we take the pre-existing vector
representations for ‘virus’ and ‘respiratory’ from the existing set of RoBERTa vocabulary
elements and assign the mean of those two word vectors to be the vector representation for
the newly created elements ‘covid’ and ‘coronavirus’.50 Third, to improve upon these approx-
imate initial representations, we feed a set of unlabelled texts containing the words ‘covid’
and ‘coronavirus’ in English to the model and train it again. In our case, we used 6,079
abstracts from academic articles on the topic of Covid-19 and the coronavirus pandemic.
We also added 1GB of short news headlines around the Covid-19 pandemic obtained from
Twitter. The format and nature of these texts closely matches the type of training text data
that we use to build the classifier (tweets). Note that none of the unlabelled tweets used
for further training are present in the labelled training data. The amount of text needed
for improved task-specific performance varies from task to task, but usually the more text,
the more accurate the model becomes. Fourth, we save the new model and apply it to our
classification task –building a classifier using labelled training data– in the same way we
would apply original RoBERTa.51

We repeat this process for each of the transformers models we compare in this arti-

50This choice is arbitrary though based on theory. Given the numerical representations of word embedding,
we assume that virus + respiratory ≈ coronavirus. This is only a starting point for the new vocabulary
elements. Once we further train the model, the embeddings for coronavirus and covid will adjust and
become more accurate representations of their meaning.

51See Appendix E for a more detailed step-by-step guide on how to further train a Transformer model with
Python code snippets.

26



cle: BERT, RoBERTa, and DeBERTa, using each model’s own tokenizer.52 We compare
the performance of the resulting three new models (BERT-Covid, RoBERTa-Covid, and
DeBERTa-Covid) with that of the original models. We use 10-times repeated 10-fold CV.53

Table 3: Model performance on Fake News Dataset, 10x repeated 10-fold CV

Model Fake True Undetermined Macro-Average

Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1 Prec. Rec. F1 SDF1

ML - SVM 0.717 0.749 0.731 0.010 0.701 0.731 0.713 0.006 0.743 0.680 0.708 0.007 0.720 0.720 0.717 0.004

Bi-LSTM - GloVe 0.719 0.732 0.717 0.014 0.720 0.702 0.703 0.013 0.712 0.692 0.694 0.013 0.709 0.717 0.705 0.11

BERT 0.805 0.766 0.782 0.004 0.745 0.806 0.772 0.009 0.748 0.714 0.724 0.003 0.762 0.767 0.760 0.003

BERT-Covid 0.857 0.784 0.815 0.003 0.772 0.809 0.786 0.002 0.744 0.762 0.749 0.005 0.785 0.791 0.783 0.003

RoBERTa 0.872 0.778 0.819 0.010 0.753 0.827 0.783 0.009 0.748 0.745 0.742 0.011 0.783 0.791 0.781 0.008

RoBERTa-Covid 0.875 0.835 0.851 0.008 0.788 0.840 0.810 0.004 0.784 0.758 0.767 0.005 0.811 0.816 0.809 0.003

DeBERTa 0.865 0.820 0.838 0.007 0.754 0.832 0.788 0.008 0.798 0.738 0.761 0.006 0.797 0.806 0.796 0.004

DeBERTa-Covid 0.881 0.834 0.855 0.007 0.772 0.850 0.808 0.003 0.786 0.742 0.760 0.002 0.809 0.813 0.808 0.001

Random baseline 0.44

Majority baseline 0.57

*Random and majority baselines represent macro-average F1 scores.

The results are in Table 3. We compare the performance of BERT, RoBERTa, and De-
BERTa with (1) their respective covid-specific further-trained models, and (2) the same two
baseline models from tables 1 and 2 –SVMs and Bi-LSTM. The results confirm our expec-
tations. First, all of the Transformers models outperform the baseline models significantly.
BERT, the lowest performing Transformer model of the three, still outperforms SVM and
Bi-LSTM-GloVe by 7% and 9.1%, respectively, in terms of their F1 scores when classifying
fake news. Similar gains apply to true and undetermined news. RoBERTa and DeBERTa
show even more significant gains in performance when compared to the two baselines.

The most relevant results are in comparing original BERT, RoBERTa and DeBERTa
with their respective covid-trained models. All the covid-trained models show substantively
significant gains in performance when comparing F1 scores, especially when classifying fake
news. First, BERT-Covid improves upon BERT by 4.22% in fake news, 1.81% in true news,
and 3.45% in undetermined. RoBERTa-Covid bests RoBERTa by 3.91% in fake news, 3.45%
in true news, and 3.37% in undetermined. Lastly, DeBERTa-covid outperforms DeBERTa
by 2.03% in fake news, by 2.56% in true news, and there is no improvement in undetermined
news. The main conclusion is this: all three further-trained models increase performance in
classifying fake news around the COVID-19 pandemic by a range between 2.03% and 4.22%.
RoBERTa sees the largest improvement in classifying true stories with 3.45%.

These results are especially significant in substantive terms for two reasons. First is the
amount of training data that we used to train the new COVID-19 models. We further trained
the Transformer models with 6,079 abstracts of academic articles on the topic of COVID-19,
or 8.4 megabytes of text. We then added 4.8 million short news headlines in English that

52From the Transformers library, we use BertTokenizer for bert− large−uncased; RobertaTokenizerFast for
roberta− large; and DebertaV2TokenizerFast for deberta− v3− large.

53We use the same hyperparameters to train the original and new models to ensure the results are comparable.
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total 978 megabytes of text. Original RoBERTa, on the other hand, was trained on 160
gigabytes of text. Our unlabelled data represent a fraction of the total training data in terms
of quantity and yet there are noticeable increases in overall performance. It is reasonable to
expect larger performance gains with more training data, or if we retrained the model from
scratch. Second, our results are averages of 100 different models across ten different sets of
10-fold cross-validation. We can be certain that if we were to draw more model samples the
differences between the original and the Covid models would remain.

In all, these results show the potential that further training models holds for increasing
performance in task-specific applications. Differences across models are significant, especially
considering that original BERT, RoBERTa and DeBERTa already perform well in this ap-
plication. Note, however, that performance will vary across domains, and researchers should
decide whether further training the model is warranted for their specific application. We
argue that doing so is especially important in domains where classifiers generally do not
perform as well, which is often due to especially complex contextual understanding or to the
use of highly specialized language. (citation omitted), for instance, find that further train-
ing an XLM-RoBERTa model improved classifier performance by 8%. In other situations,
where researchers deem the performance of the original Transformer models to be sufficient,
continuing without additional training can be an optimal choice.

In light of these results, our recommendation in this application is to fine-tune a RoBERTa
model, further training it with unlabeled Covid-related data. To illustrate how to incorporate
machine-labeled data in downstream statistical analyses, we provide an example by analyzing
the effect of the length of a tweet in words on whether the content is fake news. We draw a
random set of 3,000 news tweets around the coronavirus pandemic from the CoAID dataset
by Cui and Lee (2020), who code each tweet as fake or true. These tweets are neither in the
unlabeled dataset for further training nor in the final labeled dataset for standard fine-tuning.
1,500 tweets are used as human-coded, gold-standard data. Another set of 1,500 are used as
unlabelled data, and we apply our Roberta-Covid model to predict the labels. The final
dependent variable is whether a tweet is fake news or not. The independent variable is tweet
length. Further details of these tests as well as the complete set of results are in Appendix
I. The code is available from GitHub (omitted).54 We find that there can be substantial
discrepancies in model coefficients when using gold-standard or machine-coded labels, which
is indicative of measurement bias. Applying Egami et al.’s (2023) test significantly alleviates
measurement bias, and we recommend that scholars incorporate it into their workflow in
downstream analyses using labels produced with fine-tuned Transformers models.

Limitations

Despite the substantial gains in performance and the flexibility of Transformers models, they
have limitations. First, performance gains depend on setting the right hyperparameters for
each application. This requires the researcher to perform various cross-validation test runs to
determine the learning rate that maximizes performance, minimizing both underfitting and
overfitting.55 Second, these models will most often be used to create categorical variables that

54The original Egami et al. (2023) code is available at: osf.io/gjt87/?view only =
8f755cdf147f452a9429797 3eb83d85d.

55Usually, a model overfits when the training loss is much smaller than the test loss. This means the model
learns patterns in the training data too closely, thus minimizing training loss, but those patterns may not
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researchers can then add to their analyses. Since there is uncertainty and error around the
Transformer model’s classified labels, this error will then bleed into the analyses conducted
with them. We recommend following Egami et al.’s (2023) method to detect and correct
for measurement bias in downstream statistical analysis. That said, any coding procedure
will suffer from some form of coding error. Hence, researchers should focus on training
models that produce the highest levels of accuracy for the categories that will then be used
in their analyses. It is especially important to report variation across cross-validation runs
to understand the extent of the uncertainty around model results.

Third, the labelled training data in the final standard fine-tuning step that produces the
classifier needs to be balanced for best performance. This may run counter to the balance
of the categories in the real world, where some categories may be rare events but require a
larger share of the training data for the model to operate correctly.56 Fourth, NLP models
are known to suffer from multimodality, which occurs when the “function we are trying to
optimize is not globally concave” (Roberts, Stewart and Tingley, 2016, p.2). When estimating
a topic model, for example, we cannot know if the topics obtained were global maxima or
local maxima (the function has multiple modes). This would suggest that our models are
sensitive to starting values. Transformer-based models might suffer from multimodality too,
which is one of the reasons we emphasize the importance of repeated cross-validation as a
strategy to validate model results. In our results we show that performance is quite consistent
across different cross-validation runs. Researchers must set hyperparameters carefully, using
cross-validation to determine the best set for their particular application (see Appendix B).57

Lastly, The performance gains from Transformers models come at a computational cost.
The sheer amount of parallel calculations involved in the self-attention mechanism requires
computational power beyond the fastest CPUs available. For this reason, Transformers mod-
els are almost always run in one or multiple graphics processing units, or GPUs, which have
thousands of small cores and can perform all these calculations orders of magnitude faster.58

For smaller RoBERTa models, scholars can use Google Colab to run our sample code. Alter-
natively, they can access other cloud-based solutions with top-end GPUs, whose cost is now
small and accessible accessible.59 While more costly, researchers can also install one or more
GPUs on their local Linux, or Windows desktop with CUDA enabled, or use institutional
resources dedicated for this purpose.60

exist in the test data and, therefore, the model does not generalize well. Conversely, a model underfits
when the training loss is larger than the test loss, meaning that there is still more that the model can learn
from the training data to generalize better to unseen data. Cross-validation helps find the right training
balance that avoids both underfitting and overfitting.

56Note that the training data need not be perfectly balanced. Rather, researchers need to keep the ratio
between 2:1 and 3:1. With larger ration, the model will tend to overpredict the more frequent category to
the detriment of the more infrequent one.

57In Appendix B we document the hyperparameters used to train our cases as reference for readers.
58We understand that there is unequal access to computational resources in academia. While the costs of
using Transformers-based models are not prohibitive (see Appendix A), they still pose a major obstacle to
their use for research. Future work should aim to democratize these resources’ use by lowering their cost.

59Examples are datacrunch.io or lambdalabs.com, who offer access to top GPUs for amounts between $0.8
and $2 per hour. See Appendix D for further details on model-specific GPU performance and resources
available to scholars.

60CUDA is Nvidia’s free software that allows parallel computing on GPUs (available on Linux and Windows).
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Conclusion

This article introduces Transformers-based classification models for English and multilingual
text. We compare the performance of BERT, RoBERTa and DeBERTa with other current
state-of-the-art models used in political science and find multiple advantages. First, their ca-
pacity to understand context is greater than non-Transformer-based models. Understanding
context increases model performance when generalizing to unseen data. Yet not all models
perform equally well: RoBERTa and DeBERTa generally perform much better than BERT,
as our first application demonstrates. Second, the multilingual variants of different Trans-
formers models, in particular XLM-R, perform exceptionally well when the training data is in
multiple languages. Multilingual availability is important in comparative politics and inter-
national relations, especially with low-resource languages.61 Third, Transformers models are
flexible and can be further trained to fit a specific task, allowing researchers to ‘customize’ a
model to increase performance.

As stated above, the aim of the paper is to compare the performance of recently developed
Transformer models and highlight the versatility of these methods in social science research.
In Appendix G, we also showcase the application of our models in an established case by
replicating Abercrombie and Batista-Navarro (2022) classification task of policy preferences
in parliamentary speeches. By applying RoBERTa to their training set, we are able to
increase performance considerably.62 Furthermore, there are other practical benefits of using
Transformers models. Given the model’s overall improvements in out-of-sample accuracy,
scholars can use them more consistently to turn their projects into big data projects, using
manually labeled data as training data instead of as the full sample. This benefit is especially
relevant with text data, which is often so abundant that the real limitations researchers face
are related to resources and scaling costs. Transformers models –as other machine learning
models– also allow researchers to understand their data much better. These models can also
help us answer substantive questions that were impossible to address until now, primarily
because other machine learning and deep learning approaches had difficulty understanding
the contextual nuances of text.

We think the advantages of Transformers models greatly outweigh the limitations intro-
duced in the previous section. This is especially true considering that the models introduced
in this article represent a paradigm shift in NLP applications. They open up new avenues
and opportunities for political science research across all subfields. Indeed, considering that
text data is and will continue to be one of the biggest sources of data in the discipline, har-
nessing the power of these new models –and the ones that will inevitably follow– can have a
transformational effect in applied political science research.

61Transformers models allow political science researchers to overcome structural limitations of NLP when
analyzing corpora of low-resource languages–i.e., languages lacking large monolingual or parallel corpora or
manually crafted linguistic resources sufficient for building statistical NLP applications (Magueresse, Carles
and Heetderks, 2020). The multi-lingual capabilities of models like mBERT and XLM-RoBERTa reduce
the cost researchers have to incur in, for example, building new dictionaries or training Word2Vec-type
embeddings.

62Abercrombie and Batista-Navarro (2022) classify 34 topics to estimate policy preferences in speeches from
the English Parliament. They apply a BERT-based model and obtain an F1 score of 50.9. We replicate
their findings and apply a RoBERTa model, obtaining a 9.3 percentage point increase in the benchmark
test. See Appendix G for the performance table and an explanation of the replication process.
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